Repellent and Attractant Guidance Cues Initiate Cell Migration by Distinct Rear-Driven and Front-Driven Cytoskeletal Mechanisms
نویسندگان
چکیده
Attractive and repulsive cell guidance is essential for animal life and important in disease. Cell migration toward attractants dominates studies [1-8], but migration away from repellents is important in biology yet relatively little studied [5, 9, 10]. It is widely held that cells initiate migration by protrusion of their front [11-15], yet this has not been explicitly tested for cell guidance because cell margin displacement at opposite ends of the cell has not been distinguished for any cue. We argue that protrusion of the front, retraction of the rear, or both together could in principle break cell symmetry and start migration in response to guidance cues [16]. Here, we find in the Dictyostelium model [6] that an attractant-cAMP-breaks symmetry by causing protrusion of the front of the cell, whereas its repellent analog-8CPT-breaks symmetry by causing retraction of the rear. Protrusion of the front of these cells in response to cAMP starts with local actin filament assembly, while the delayed retraction of the rear is independent of both myosin II polarization and of motor-based contractility. On the contrary, myosin II accumulates locally in the rear of the cell in response to 8CPT, anticipating retraction and required for it, while local actin assembly is delayed and couples to delayed protrusion at the front. These data reveal an important new concept in the understanding of cell guidance.
منابع مشابه
Netrins guide migration of distinct glial cells in the Drosophila embryo.
Development of the nervous system and establishment of complex neuronal networks require the concerted activity of different signalling events and guidance cues, which include Netrins and their receptors. In Drosophila, two Netrins are expressed during embryogenesis by cells of the ventral midline and serve as attractant or repellent cues for navigating axons. We asked whether glial cells, whic...
متن کاملDriving/Regeneration and Stability Enhancement of a 4WD Hybrid Vehicles Using Multi-Stage Fuzzy Controller
In front wheels driven vehicles, fuel economy can be obtained by summing torques applied to rear wheels. On the other hand, unequal torques applied to rear wheels provides enhanced safety. In this paper, a model with seven degrees of freedom is considered for the vehicle body. Thereafter, power-train subsystems are modeled. Considering an electrical machine on each rear wheel, a fuzzy controlle...
متن کاملVisual map development: bidirectional signaling, bifunctional guidance molecules, and competition.
Topographic maps are a two-dimensional representation of one neural structure within another and serve as the main strategy to organize sensory information. The retina's projection via axons of retinal ganglion cells to midbrain visual centers, the optic tectum/superior colliculus, is the leading model to elucidate mechanisms of topographic map formation. Each axis of the retina is mapped indep...
متن کاملDual TORCs driven and B56 orchestrated signaling network guides eukaryotic cell migration
Different types of eukaryotic cells may adopt seemingly distinct modes of directional cell migration. However, several core aspects are regarded common whether the movement is either ameoboidal or mesenchymal. The region of cells facing the attractive signal is often termed leading edge where lamellipodial structures dominates and the other end of the cell called rear end is often mediating cyt...
متن کاملDirect detection of guidance receptor activity during border cell migration.
Guidance receptor signaling is crucial for steering migrating cells. Despite this, we generally lack direct measurements of such signaling. Border cells in Drosophila migrate as a tightly associated group, but dynamically, with front and rear cells exchanging places. They use the receptor tyrosine kinase (RTK) PDGF/VEGF receptor (PVR) as a guidance receptor, perceiving the attractant Pvf1. Here...
متن کامل